Differential equations and integral geometry
نویسنده
چکیده
be the operator of mean value over a radius r sphere centered at y ∈ R. The integral transform I is clearly injective. Let C be a compact hypersurface in R isotopic to a sphere. Theorem 1.1 Let f(x) be a smooth function vanishing near C. Then one can recover f from its mean values along the spheres tangent to C, and the inversion is given by an explicit formula. In fact we will show that this theorem is true for any compact manifold C satisfying a mild condition. The only known before case was the family of all spheres tangent to a plane (horospheres in the hyperbolic geometry, see [GGV]). The function If(y; r) satisfies the Darboux differential equation ( ∂ ∂r2 − m ∑
منابع مشابه
Construction of measures of noncompactness of $C^k(Omega)$ and $C^k_0$ and their application to functional integral-differential equations
In this paper, first, we investigate the construction of compact sets of $ C^k$ and $ C_0^k$ by proving ``$C^k, C_0^k-version$" of Arzel`{a}-Ascoli theorem, and then introduce new measures of noncompactness on these spaces. Finally, as an application, we study the existence of entire solutions for a class of the functional integral-differential equations by using Darbo's fixe...
متن کاملNumerical solutions of two-dimensional linear and nonlinear Volterra integral equations: Homotopy perturbation method and differential transform method
متن کامل
The distributional Henstock-Kurzweil integral and measure differential equations
In the present paper, measure differential equations involving the distributional Henstock-Kurzweil integral are investigated. Theorems on the existence and structure of the set of solutions are established by using Schauder$^prime s$ fixed point theorem and Vidossich theorem. Two examples of the main results paper are presented. The new results are generalizations of some previous results in t...
متن کاملSolving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets
In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...
متن کاملλ-Symmetry method and the Prelle-Singer method for third-order differential equations
In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry m...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013