Differential equations and integral geometry

نویسنده

  • A. B. Goncharov
چکیده

be the operator of mean value over a radius r sphere centered at y ∈ R. The integral transform I is clearly injective. Let C be a compact hypersurface in R isotopic to a sphere. Theorem 1.1 Let f(x) be a smooth function vanishing near C. Then one can recover f from its mean values along the spheres tangent to C, and the inversion is given by an explicit formula. In fact we will show that this theorem is true for any compact manifold C satisfying a mild condition. The only known before case was the family of all spheres tangent to a plane (horospheres in the hyperbolic geometry, see [GGV]). The function If(y; r) satisfies the Darboux differential equation ( ∂ ∂r2 − m ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of measures of noncompactness of $C^k(Omega)$ and $C^k_0$ and their application to functional integral-differential equations

‎In this paper‎, ‎first‎, ‎we investigate the construction of compact sets of $ C^k$ and $ C_0^k$‎ ‎by proving ``$C^k‎, ‎C_0^k-version$‎" ‎of Arzel`{a}-Ascoli theorem‎, ‎and then introduce new measures of noncompactness on these spaces‎. ‎Finally‎, ‎as an application‎, ‎we study the existence of entire solutions for a class of the functional integral-differential equations by using Darbo's fixe...

متن کامل

The distributional Henstock-Kurzweil integral and measure differential equations

In the present paper, measure differential equations involving the distributional Henstock-Kurzweil integral are investigated. Theorems on the existence and structure of the set of solutions are established by using Schauder$^prime s$ fixed point theorem and Vidossich theorem. Two examples of the main results paper are presented. The new results are generalizations of some previous results in t...

متن کامل

Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets

In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...

متن کامل

λ-Symmetry method and the Prelle-Singer method for third-order differential equations

In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry m...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013